Dynamics of the proton aurora and current sheet in the magnetosphere. Ground-based and satellite observations

Igor B. Ievenko¹, Stanislav G. Parnikov¹

¹ Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russia

ievenko@ikfia.ysn.ru

The proton aurorae in the emissions of atomic hydrogen arise as a result of energetic proton precipitation and their charge exchange at the heights of ionosphere E layer. The proton precipitation occurs from of the magnetosphere region with an isotropic distribution of charged particle fluxes. Isotropization occurs due to the pitch-angle scattering at the magnetic equator with a large curvature of field lines in the current sheet [1,2]. The low-latitude boundary of particle isotropic fluxes is registered with the low-altitude satellites with a polar orbit. Equatorward of this boundary, the precipitation of energetic protons is sometimes observed as a result of scattering during interaction with EMIC waves [3].

This report presents the results of our observations at the Maimaga station (CGMC: 58° , 202°) of the proton aurora dynamics in the MLT evening sector during a magnetic storm with a minimum of SYM-H \sim -130 nT on December 01, 2023. The main phase of storm began in \sim 10 minutes after a sharp increase of the electric field dawn-dusk Ey in the solar wind (-V_x×B_z) up to \sim 11 mV/m at \sim 1010 UT. At this time, the appearance of broad band in the 486.1 nm emission (H-beta) of atomic hydrogen was registered at the latitudes of diffuse aurora in the 557.7 nm emission. The band moved equatorward from the northern horizon and passed the station zenith at a velocity of \sim 205 m/s. Next, short (\sim 10 minutes) activizations of aurorae were observed throughout the all sky in the geomagnetic latitudes interval of 54-62° with the maximum H-beta emission intensity of \sim 600 Rayleigh after subtracting of the continuum intensity. Narrow forms of electronic aurorae were sometimes detected in the 470.9 nm N₂ + emission.

At \sim 1115 UT, the NOAA19 satellite registered the isotropic boundary of the energetic proton and electron fluxes at the optical observation meridian. The isotropic flux maximum of protons of width \sim 2° at this boundary coincided with the arc position in the H-beta emission. Mid-latitude magnetic variations and the SYM-H index point to a relationship of the main phase onset of storm to the magnetic effect of the current sheet. We believe that the observed dynamics of proton aurora in this event mapped a rapid motion of isotropic flux boundary of the energetic protons and, correspondingly, current sheet into the inner magnetosphere as a consequence of sharp increase of the magnetospheric convection.

The work was performed as part of State Task no. 122011700172-2.

- [1] V.A. Sergeev, E.M. Sazhina, N.A. Tsyganenko et al., Planet. and Space Sc. 31 (1983), 1147.
- [2] V.A. Sergeev and M. V. Malkov, Geomagn. and Aeronomy 27 (1992), 652 (in Russian).
- [3] A.G.Yahnin and T.A.Yahnina, J. Atmos. and Sol.-Terrest. Physics 69 (2007) 1690.